Creating Futures Project

Develop and apply

planning and communication tools

to make informed choices for the future

- Govt funded Foundation of Research, Science & Technology
- > \$1.6Million Four Year Project (2006 to 2010)
- Environment Waikato Lead Agency
- Several Research Partners

Objective 1

Processes to evaluate, deliberate, and choose futures through scenario analysis and multi-criteria evaluation frameworks

- Create scenarios based on trends and activities
- Diagnose stakeholder interests and specify issues from scenarios
- Analyse underlying system and identify indicators
- Evaluate different scenarios based identified issues & indicators
- Deliberate on information identified through evaluation
- Revisit assumptions, indicators & issues as deliberation suggests

Objective 2

Development of Spatial Decision Support Systems to support long-term, integrated planning

Why an SDSS?

- Long-term integrated planning and resource management are examples of "wicked" or unstructured problems
- Characterised by
 - Multiple actors
 - ↓ Multiple values & views
 - ↓ Multiple outcomes possible
 - ↓ High uncertainty

Uncertainty
relative to
the
knowledge
for solving
the
problemweakly structured
problemunstructured
problemstructured
problemstructured
problemweakly structured
problem

Conflicting views on values, goals and measures relative to the solution of the problem

After van Delden 2000

An SDSS helps address unstructured problems

- Integrates society, economy, and environment (systems approach)
- Identifies links & feedbacks
- Sets limits explicitly (e.g., only so much land, water, soil)
- Demonstrate importance of "where" in addition to "what" and "how much"

Example of Unstructured Problem: Waikato Region Community Outcomes

- Sustainable Environment The Waikato region values and protects its diverse, interconnected natural environments.
- Quality of Life The Waikato region is a great place to live, providing the services and opportunities we need to live well.
- Sustainable Economy The Waikato region balances a thriving economy with looking after its people, places and environment.
- Culture & Identify The Waikato region identifies with and values its land, air rivers and waterways, mountains, flora, fauna and its people.
- Participation & Equity The Waikato region builds strong informed communities and has a culture that encourages people and communities to play their part.

Waikato 2006

- Population: 387,700 (StatsNZ June 06 est.)
- Households: 145,100 (StatsNZ June 06 est.)

Land Cover (LCDB 2)

- ↓ Agriculture 55.2%
- ✓ Natural 28.2%
- ✓ Forestry 14.4%
- ↓ Urban 1.1%
- ✓ Other 1.0%
- GDP: ~ \$12 Billion (2003 GDP + 3% annual growth)
- Ecological Footprint: ~9 ha
- # Businesses: ~34,000

Waikato 2026?

- Population: 426,800 (+39,100, StatsNZ 2026 med. est.)
- Households: 169,400 (+24,300; StatsNZ June 06 est.)

Land Cover (LCDB 7)

- ↓ Agriculture ?
- ✓ Natural ?
- ↓ Forestry ?
- ↓ Urban ?
- \checkmark Other ~ ?
- GDP: ~ \$33 Billion (2003 GDP + 3% annual growth)
- Ecological Footprint: ?
- # Businesses: ~50,000+ ?

SDSS: Systems Approach

Systems models track stocks & flows over time

SDSS Operates at 3 Scales

WRDEEM: Waikato Region Dynamic Economy-Environment Model

- From ARDEEM Auckland-based model developed under the Pathways to Sustainability FRST Programme
- Models flows of economic commodities
 - monetary (\$NZ1998)
 - physical (tonnes)
 - natural resource inputs (e.g. land, energy, water)
 - residual outputs (e.g. wastes, pollutants and emissions).
- Simulate combined environmental and economic implications of change between 1998 and 2051.[1]
- Driven by economic growth scenarios

Waikato SDSS Prototype

- Development co-funded by Landcare Research
- RIKS METRONAMICA model populated with Waikato data
- Only models land use change
- Demand for land use set explicitly

Dairy Expansion

Land for dairying increases ~4% annually

Land Use

Diversification

Demand for non-dairy primary production land increases

Village Life

Residential land increases 7-fold

Land Use

What We Want to Achieve

- 1. Planning tools that inform communities
- 2. Tools expose links and trade-offs
- 3. Councils use these tools

Contacts

Dr Beat Huser, Environment Waikato

- Project Leader
- Beat.Huser@ew.govt.nz
- Dr Daniel Rutledge, Landcare Research
 - Science Leader & Objective 2 Leader
 - rutledged@landcareresearch.co.nz
- Dr Liz Wedderburn, AgResearch
 - Objective 1 Leader
 - liz.wedderburn@agresearch.co.nz

