

WISE Catchment Prioritisation Case Study Introduction & Discussion

D Rutledge & R Price
Presentation to Waikato Regional Council
20 December 2011

Catchment Prioritisation: Policy Context

- 2nd Generation RPS Section 8
 - "Maintain or improve values of water bodies by identifying catchments that require specific intervention to address the adverse effects of activities and land-use changes"
- 8 considerations (detail to follow...)
- WRC will undertake a process to prioritise catchments

NATIONAL POLICY STATEMENT

Freshwater Management 2011

Issued by notice in the Gazette on 12 May 2011

- Water quality
- Establish freshwater objectives and set freshwater quality limits for all bodies of freshwater, with regard to *at least*:
 - Climate change
 - Connections between water bodies
- Establish methods to avoid over allocation
- Specify targets and implement methods to improve water quality and meet those targets within a specified timeframe.
- Impose conditions on discharge permits to meet limits and targets set.
- Establish rules requiring the adoption of the best practicable option to prevent or minimise environment effects of discharges into fresh water

WISE System Design

Land use –
water quality
relationship via
1) source
2) drain
3) rain
coefficients

INTEGRATION - LCR LEAD

GEONAMICA Framework - RIKS

RPS Considerations

Consideration	Addressed by WISE?	Comments
Current and desired values of water bodies	Yes	Future trends in water quality for whole region (N & P impacts only at this stage)
National or legislation direction	Yes	Zoning can implement national, regional or local rules
Degree of improvement influence by human action	Yes	Land-use change
Potential to address more than one issue through intervention	Yes	Integration of economics, environment, demographics; soft links to other models
Timing, intensity, and scale of change to land use and activities required	Partial	Via land-use change only; cannot model impacts of different activities within a single land use
Vulnerability and values of receiving waters	Yes	Could be reflected via zoning rules
Tangata whenua values	Possible	Could be reflected via zoning rules
Net benefit to community	Possible	Evaluation & comparison of multiple trends from WISE; requires formulation of 'net benefits algorithm'

Case Study Approach

- 1. Establish 1-3 scenarios of future change to 2050
- 2. Analyse future changes to land-use and impacts to water quality (N, P loading only) in WISE under each of three scenarios
- 3. Assess potential future impacts
 - Absolutely: loading trends relative to likely water quality thresholds (e.g., FW NPS)
 - Relatively: loading trends relative to perceived FW values (need a way to assess this)
- 4. Use land-use outputs from WISE as inputs to CLUES (may require some reclassification via LU-CLASS) note also can assess impacts to E. coli and sediments
- 5. Evaluate mitigation options via CLUES to reduce loadings/increase water quality in target catchments

Case Study Approach (Visual)

